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In this note, we argue that model-based automated deduc-
tion techniques are very well suited for knowledge repre-
sentation purposes. This is an argument leaving the main-
stream of knowledge representation research, which currently
has its focus on the development of description logic systems.
We want to point out that we consider this direction of re-
search extremely successful: it led to a deep inside of compu-
tational properties of decidable subclasses of first order rea-
soning; it made clear some interesting links to nonclassical
logics and moreover, description logic systems are nowadays
outperforming most modal logic theorem provers. Despite
of those successful developments we find two reasons which
motivated our attempt to use first order theorem provers
for knowledge representation purposes instead of dedicated
description logic systems :

• Even the key researchers in the field of description log-
ics are stating some severe deficiencies of their systems
(e.g. [4]: In realistic applications it is clear, that the
query language of description logic systems is not pow-
erful enough; there is no possibility to deal with non-
monotonic reasoning and there are no efficient means
to handle large A-Boxes. Only recently the commu-
nity investigates seriously the extension of description
logic systems towards A-Box reasoning, which is all
but trivial [5].

• Currently we are using knowledge representation in
two application projects. One is an EU-project, TRIAL-
SOLUTION (www.trial-solution.de), where a system
for the use of personalized electronic books is devel-
oped. This is done in Slicing Book Technology (www.slicing-
infotech.de), such that knowledge which is represented
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in several books has to be combined by a knowledge
representation system, in order to answer the queries
given by a user, i.e. a reader. Because the chunks of
knowledge are rather small, it is clear that we have to
handle ten thousands of such chunks, which have to be
represented as objects in an A-Box - Hence we have to
handle very big A-Boxes. In a second application we
have to model a certain domain of a major German
bank in order to support decision making. Both appli-
cations demand language and query constructs which
are not available in current description logic systems.

It is obvious that most of the arguments against and defi-
ciencies of description logic hold for the application for rea-
soning within the semantic web as well.

Our approach is oriented at the paradigm of logic pro-
gramming and model-based theorem proving. Instead of
starting with a small and efficient kernel language like ALC,
which is stepwisely extended towards applicability, we start
with the general language of first order logic and then, we
identify sub-languages that are decidable. The largest sub-
class that we can handle is that of the Schönfinkel-Bernays
fragment extended by a default-negation principle. The user
of our system can decide to stay within this class or whether
she wants to use some language construct which leave this
class. It is important to note, that we offer our kernel lan-
guage with a syntax which is very similar to languages like
OIL.

Our approach can be summarized by the equation

KRHYPER = Kernel + Logic Programming

where

• Kernel is an OIL-like language which is augmented by
some additional constructs, like non-monotonic nega-
tion and second order extension.

• Logic Programming denotes rules, axioms, constraints
and concrete domains from logic programming.

• KRHYPER is the (extended) first order predicate logic
which can be processed by our model generating tableau
theorem prover Hyper ([2, 3]).

The Kernel Language
OIL class definitions, e.g.

class-def defined carnivore

subclass-of animal



slot-constraint eats

value-type animal

have a similar concrete syntax in our kernel language. Most
parts of OIL are covered, in particular all kinds of class def-
initions, inverse roles, transitive roles etc. The constructs
from the Kernel language are translated to our logic pro-
gramming language following standard schemes.

Beyond this, we are able to handle the following points
which are mentioned explicitly as missing in [4]:

Rules/Axioms:
In addition to constructs in the syntax of the knowledge
representation language we can use arbitrary formulae as
constraints, rules or axioms. For instance, we can state in
the rule part

dangerous(X) :- carnivore(X), larger than(30,X).

to express sufficient conditions for being dangerous. The
larger_than relation would be defined by the user as a
unary Prolog-predicate.

Using Instances in Class Definitions
Although it is well known (cf. [1]) that reasoning with do-
main instances certainly leads to EXPTIME-algorithms, it
is very clear that exactly this is mandatory in practical ap-
plications. For instance, the previous example could also be
supplied as

dangerous <= carnivore & larger than(30).

in the terminological part.

Default Reasoning
In our system we included a closed world assumption, such
that we can use default negation principle “not ” besides
the classical one. For this negation we implemented a well-
founded model semantics. Default negation may be used
both in the rule part and in the terminological part. For the
latter case, the previous example might more appropriately
be written as

dangerous <= carnivore & not smaller than(30).

Switching Back and Forth
One may switch back and forth between the terminological
part and the rule part, by keeping in mind that concepts
translate into unary predicates, and that roles translate into
binary predicates.

A-Boxes
Concrete instances of concepts (roles) are handled via unary
(binary) predicates. This is a very natural and well-understood
method for model generation procedures. For instance, from

dangerous <= carnivore & not smaller than(30).

and the A-Box consisting solely of

carnivore(leo).

the model generation prover will derive dangerous(leo).
Unlike as in other systems, no grounding in a preprocessing
phase takes place, and the system is capable of computing
with A-Boxes consisting of tens of thousands of objects.

Limited Second-Order Expressivity
Very often it is necessary to treat statements of the lan-
guage as objects and to apply procedures for some kind of
evaluation to them. This can be done in our context by
meta-language constructs à la Prolog. For instance, via
concept_instance(Concept,Instance) one has access to
the Concept names where Instance is an instance of. For
example,

all dangerous(X) :-

call(findall(Z,

(dangerous(Y),

concept instance(Z,Y)),X)).

describes as a Prolog-list all the concepts that have an in-
stance of the dangerous concept.

Altogether we want to point out that our approach to
use an existing deduction system and to carefully divide its
language with respect to complexity and decidability issues
leads to a knowledge representation system that allows to
handle practical applications.

1. REFERENCES
[1] C. Areces, P. Blackburn, and M. Marx. A road-map on

complexity for hybrid logics. In CSL, pages 307–321,
1999.

[2] P. Baumgartner. Hyper Tableaux — The Next
Generation. In H. de Swaart, editor, Automated
Reasoning with Analytic Tableaux and Related Methods,
volume 1397 of Lecture Notes in Artificial Intelligence,
pages 60–76. Springer, 1998.

[3] J. Dix, U. Furbach, and I. Niemelä. Nonmonotonic
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